Week5 monday

To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet, stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of how its computations would process input strings; the reader should be able to reconstruct the state diagram or formal definition precisely from such a descripton. The informal description of a PDA can refer to some common modules or subroutines that are computable by PDAs:

- PDAs can "test for emptyness of stack" without providing details. How? We can always push a special end-of-stack symbol, $\$$, at the start, before processing any input, and then use this symbol as a flag.
- PDAs can "test for end of input" without providing details. How? We can transform a PDA to one where accepting states are only those reachable when there are no more input symbols.

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language described by a regular expression is built up recursively according to the expression's syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle, beginning, or end of the final string as the derivation proceeds.

Term	Typical symbol	Definition
Context-free grammar (CFG)	G	$G=(V, \Sigma, R, S)$
Variables	V	Finite set of symbols that represent phases in production pattern
Terminals	Σ	Alphabet of symbols of strings generated by CFG $V \cap \Sigma=\emptyset$
Rules	R	Each rule is $A \rightarrow u$ with $A \in V$ and $u \in(V \cup \Sigma)^{*}$
Start variable	S	Usually on LHS of first / topmost rule
Derivation	$S \Longrightarrow \cdots \Longrightarrow w$	Sequence of substitutions in a CFG Start with start variable, apply one rule to one occurrence of a variable at a time
Language generated by the CFG G	$L(G)$	$\begin{aligned} & \left\{w \in \Sigma^{*} \mid \text { there is derivation in } G \text { that ends in } w\right\}= \\ & \left\{w \in \Sigma^{*} \mid S \Longrightarrow{ }^{*} w\right\} \end{aligned}$
Context-free language		A language that is the language generated by some CFG
Sipser pages 102-103		

Examples of context-free grammars, derivations in those grammars, and the languages generated by those grammars
$G_{1}=(\{S\},\{0\}, R, S)$ with rules

$$
\begin{aligned}
& S \rightarrow 0 S \\
& S \rightarrow 0
\end{aligned}
$$

In $L\left(G_{1}\right) \ldots$

Not in $L\left(G_{1}\right) \ldots$
$G_{2}=(\{S\},\{0,1\}, R, S)$

$$
S \rightarrow 0 S|1 S| \varepsilon
$$

In $L\left(G_{2}\right) \ldots$

Not in $L\left(G_{2}\right) \ldots$
$(\{S, T\},\{0,1\}, R, S)$ with rules

$$
\begin{aligned}
& S \rightarrow T 1 T 1 T 1 T \\
& T \rightarrow 0 T|1 T| \varepsilon
\end{aligned}
$$

In $L\left(G_{3}\right) \ldots$

Not in $L\left(G_{3}\right) \ldots$
$G_{4}=(\{A, B\},\{0,1\}, R, A)$ with rules

$$
A \rightarrow 0 A 0|0 A 1| 1 A 0|1 A 1| 1
$$

In $L\left(G_{4}\right) \ldots$

Not in $L\left(G_{4}\right) \ldots$

Extra practice: Is there a CFG G with $L(G)=\emptyset$?

Design a CFG to generate the language $\{a b b a\}$

$$
\begin{aligned}
& (\{S, T, V, W\},\{a, b\},\{S \rightarrow a T, T \rightarrow b V, V \rightarrow b W, W \rightarrow a\}, S) \\
& (\{Q\},\{a, b\},\{Q \rightarrow a b b a\}, Q) \\
& (\{X, Y\},\{a, b\},\{X \rightarrow a Y a, Y \rightarrow b b\}, X)
\end{aligned}
$$

Design a CFG to generate the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Sample derivation:

Design a CFG to generate the language $\left\{a^{i} b^{j} \mid j \geq i \geq 0\right\}$

Sample derivation:

Week5 wednesday

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar. The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

- Quick proof that every regular language is context free
- To prove closure of the class of context-free languages under a given operation, we can choose either of two modes of proof (via CFGs or PDAs) depending on which is easier

Over $\Sigma=\{a, b\}$, let $L=\left\{a^{n} b^{m} \mid n \neq m\right\}$. Goal: Prove L is context-free.

Suppose L_{1} and L_{2} are context-free languages over Σ. Goal: $L_{1} \cup L_{2}$ is also context-free.

Approach 1: with PDAs

Let $M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, \delta_{2}, q_{2}, F_{2}\right)$ be PDAs with $L\left(M_{1}\right)=L_{1}$ and $L\left(M_{2}\right)=L_{2}$.
Define $M=$

Approach 2: with CFGs
Let $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ be CFGs with $L\left(G_{1}\right)=L_{1}$ and $L\left(G_{2}\right)=L_{2}$.
Define $G=$

Suppose L_{1} and L_{2} are context-free languages over Σ. Goal: $L_{1} \circ L_{2}$ is also context-free.

Approach 1: with PDAs

Let $M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, \delta_{2}, q_{2}, F_{2}\right)$ be PDAs with $L\left(M_{1}\right)=L_{1}$ and $L\left(M_{2}\right)=L_{2}$.
Define $M=$

Approach 2: with CFGs
Let $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ be CFGs with $L\left(G_{1}\right)=L_{1}$ and $L\left(G_{2}\right)=L_{2}$.
Define $G=$

Summary

Over a fixed alphabet Σ, a language L is regular

> iff it is described by some regular expression
> iff it is recognized by some DFA
> iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free
iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.
Fact: There are context-free languages that are not nonregular.
Fact: There are countably many regular languages.
Fact: There are countably inifnitely many context-free languages.
Consequence: Most languages are not context-free!
Examples of non-context-free languages

$$
\begin{aligned}
& \left\{a^{n} b^{n} c^{n} \mid 0 \leq n, n \in \mathbb{Z}\right\} \\
& \left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k, i \in \mathbb{Z}, j \in \mathbb{Z}, k \in \mathbb{Z}\right\} \\
& \left\{w w \mid w \in\{0,1\}^{*}\right\}
\end{aligned}
$$

(Sipser Ex 2.36, Ex 2.37, 2.38)
There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A is a context-free language, there there is a number p where, if s is any string in A of length at least p, then s may be divided into five pieces $s=u v x y z$ where (1) for each $i \geq 0, u v^{i} x y^{i} z \in A$, (2) $|u v|>0$, (3) $|v x y| \leq p$. We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

