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To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet, stack
alphabet, and state diagram. An informal description of a PDA is a step-by-step description of how its
computations would process input strings; the reader should be able to reconstruct the state diagram or
formal definition precisely from such a descripton. The informal description of a PDA can refer to some
common modules or subroutines that are computable by PDAs:

• PDAs can “test for emptyness of stack” without providing details. How? We can always push a
special end-of-stack symbol, $, at the start, before processing any input, and then use this symbol as
a flag.

• PDAs can “test for end of input” without providing details. How? We can transform a PDA to one
where accepting states are only those reachable when there are no more input symbols.

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Term Typical symbol Definition

Context-free grammar
(CFG)

G G = (V,Σ, R, S)

Variables V Finite set of symbols that represent phases in production
pattern

Terminals Σ Alphabet of symbols of strings generated by CFG
V ∩ Σ = ∅

Rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

Start variable S Usually on LHS of first / topmost rule
Derivation Sequence of substitutions in a CFG

S =⇒ · · · =⇒ w Start with start variable, apply one rule to one occurrence
of a variable at a time

Language generated by the
CFG G

L(G) {w ∈ Σ∗ | there is derivation in G that ends in w} =
{w ∈ Σ∗ | S =⇒ ∗w}

Context-free language A language that is the language generated by some CFG
Sipser pages 102-103
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Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .
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({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

Extra practice: Is there a CFG G with L(G) = ∅?
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Design a CFG to generate the language {abba}

({S, T, V,W}, {a, b}, {S → aT, T → bV, V → bW,W → a}, S)

({Q}, {a, b}, {Q → abba}, Q)

({X, Y }, {a, b}, {X → aY a, Y → bb}, X)

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:
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Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

Over Σ = {a, b}, let L = {anbm | n ̸= m}. Goal: Prove L is context-free.
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.
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