Week6 friday

To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or,
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- High-level description: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

Assume L is enumerated by some enumerator, E, so $L=L(E)$. We'll use E in a subroutine within a high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine M_{E} with $L\left(M_{E}\right)=L(E)$.
Define M_{E} as follows: $M_{E}=$ "On input w,

1. Run E. For each string x printed by E.
2. Check if $x=w$. If so, accept (and halt); otherwise, continue."

Assume L is Turing-recognizable and there is a Turing machine M with $L=L(M)$. We'll use M in a subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator E_{M} with $L\left(E_{M}\right)=L(M)$.
Idea: check each string in turn to see if it is in L.
How? Run computation of M on each string. But: need to be careful about computations that don't halt.
Recall String order for $\Sigma=\{0,1\}: s_{1}=\varepsilon, s_{2}=0, s_{3}=1, s_{4}=00, s_{5}=01, s_{6}=10, s_{7}=11, s_{8}=000, \ldots$
Define E_{M} as follows: $E_{M}=$ " ignore any input. Repeat the following for $i=1,2,3, \ldots$

1. Run the computations of M on $s_{1}, s_{2}, \ldots, s_{i}$ for (at most) i steps each
2. For each of these i computations that accept during the (at most) i steps, print out the accepted string."

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibilities: $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$ where

$$
\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})
$$

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadthfirst search of computation tree: one tape is "read-only" input tape, one tape simulates the tape of the nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Two models of computation are called equally expressive when every language recognizable with the first model is recognizable with the second, and vice versa.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of computation are equally expressive with the standard Turing machine.

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well. Proof using Turing machines:

Proof using nondeterministic Turing machines:

Proof using enumerators:

