
Week5

Monday April 25

To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet, stack
alphabet, and state diagram. An informal description of a PDA is a step-by-step description of how its
computations would process input strings; the reader should be able to reconstruct the state diagram or
formal definition precisely from such a descripton. The informal description of a PDA can refer to some
common modules or subroutines that are computable by PDAs:

• PDAs can “test for emptyness of stack” without providing details. How? We can always push a
special end-of-stack symbol, $, at the start, before processing any input, and then use this symbol as
a flag.

• PDAs can “test for end of input” without providing details. How? We can transform a PDA to one
where accepting states are only those reachable when there are no more input symbols.

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Term Typical symbol Definition

Context-free grammar
(CFG)

G G = (V,Σ, R, S)

Variables V Finite set of symbols that represent phases in production
pattern

Terminals Σ Alphabet of symbols of strings generated by CFG
V ∩ Σ = ∅

Rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

Start variable S Usually on LHS of first / topmost rule
Derivation Sequence of substitutions in a CFG

S =⇒ · · · =⇒ w Start with start variable, apply one rule to one occurrence
of a variable at a time

Language generated by the
CFG G

L(G) {w ∈ Σ∗ | there is derivation in G that ends in w} =
{w ∈ Σ∗ | S =⇒ ∗w}

Context-free language A language that is the language generated by some CFG
Sipser pages 102-103

CC BY-NC-SA 2.0 Version February 22, 2023 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

CC BY-NC-SA 2.0 Version February 22, 2023 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

Extra practice: Is there a CFG G with L(G) = ∅?

CC BY-NC-SA 2.0 Version February 22, 2023 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {abba}

({S, T, V,W}, {a, b}, {S → aT, T → bV, V → bW,W → a}, S)

({Q}, {a, b}, {Q → abba}, Q)

({X, Y }, {a, b}, {X → aY a, Y → bb}, X)

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

CC BY-NC-SA 2.0 Version February 22, 2023 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 5 Monday

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track
and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted
on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each
week are all due on Friday (with no penalty late submission open until Sunday).

Please complete the review quiz questions on Gradescope about context-free grammars

Pre class reading for next time: Example 2.3 and Example 2.4

CC BY-NC-SA 2.0 Version February 22, 2023 (5)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday April 27

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

Over Σ = {a, b}, let L = {anbm | n ̸= m}. Goal: Prove L is context-free.

CC BY-NC-SA 2.0 Version February 22, 2023 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version February 22, 2023 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version February 22, 2023 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.

CC BY-NC-SA 2.0 Version February 22, 2023 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 5 Wednesday

Please complete the review quiz questions on Gradescope about context-free languages

Pre class reading for next time: Pages 165-167

CC BY-NC-SA 2.0 Version February 22, 2023 (10)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday April 29

A set X is said to be closed under an operation OP if, for any elements in X, applying OP to them gives
an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ((x ∈ Z ∧ y ∈ Z) → xy ∈ Z)
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ((A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A))
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.

Assume Σ = {0, 1,#}

Σ∗ Regular / nonregular and context-free / not context-free
{0i#1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free

{0i1j#1j0i | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free
{0i1j#0i1j | i ≥ 0, j ≥ 0} Regular / nonregular and context-free / not context-free

CC BY-NC-SA 2.0 Version February 22, 2023 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Turing machines: unlimited read + write memory, unlimited time (computation can proceed without
“consuming” input and can re-read symbols of input)

• Division betweeen program (CPU, state diagram) and data

• Unbounded memory gives theoretical limit to what modern computation (including PCs, supercom-
puters, quantum computers) can achieve

• State diagram formulation is simple enough to reason about (and diagonalize against) while expressive
enough to capture modern computation

For Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) the computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible). Formally, transition function is

δ : Q× Γ → Q× Γ× {L,R}

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is

{w ∈ Σ∗ | computation of M on w halts after entering the accept state} = {w ∈ Σ∗ | w is accepted by M}

CC BY-NC-SA 2.0 Version February 22, 2023 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

An example Turing machine: Σ = ,Γ =

δ((q0, 0)) =

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Extra practice:

Formal definition:

Sample computation:

CC BY-NC-SA 2.0 Version February 22, 2023 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Sipser Figure 3.10

Conventions in state diagram of TM: b → R label means b → b, R and all arrows missing from diagram
represent transitions with output (qreject, , R)

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

Computation on input string 01#01

q1 ↓
0 1 # 0 1

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

CC BY-NC-SA 2.0 Version February 22, 2023 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1

CC BY-NC-SA 2.0 Version February 22, 2023 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Review: Week 5 Friday

Please complete the review quiz questions on Gradescope about Turing machines.

Pre class reading for next time: Definitions 3.5, 3.6 (page 170)

CC BY-NC-SA 2.0 Version February 22, 2023 (16)

http://gradescope.com
https://creativecommons.org/licenses/by-nc-sa/2.0/

