
undecidable-languages

Week9 monday

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.

Halting problem

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

We will define a computable function that witnesses the mapping reduction ATM ≤m HALTTM .

Using Theorem 5.23, we can then conclude that HALTTM is undecidable.

Define F : Σ∗ → Σ∗ by

F (x) =

{
constout if x ̸= ⟨M,w⟩ for any Turing machine M and string w over the alphabet of M

⟨M ′, w⟩ if x = ⟨M,w⟩ for some Turing machine M and string w over the alphabet of M .

where constout = ⟨ , ε⟩ and M ′ is a Turing machine that computes like M except, if the
computation ever were to go to a reject state, M ′ loops instead.

F (⟨ , 001⟩) =

F (⟨ , 1⟩) =

CC BY-NC-SA 2.0 Version February 22, 2023 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To use this function to prove that ATM ≤m HALTTM , we need two claims:

Claim (1): F is computable

Claim (2): for every x, x ∈ ATM iff F (x) ∈ HALTTM .

CC BY-NC-SA 2.0 Version February 22, 2023 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: ATM ≤m HALTTM

True or False: HALTTM ≤m ATM .

CC BY-NC-SA 2.0 Version February 22, 2023 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week9 wednesday

Recall: A ismapping reducible to B, written A ≤m B, means there is a computable function f : Σ∗ → Σ∗

such that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Theorem (Sipser 5.28): If A ≤m B and B is recognizable, then A is recognizable.

Proof:

Corollary: If A ≤m B and A is unrecognizable, then B is unrecognizable.

Strategy:

(i) To prove that a recognizable language R is undecidable, prove that ATM ≤m R.

(ii) To prove that a co-recognizable language U is undecidable, prove that ATM ≤m U , i.e. that ATM ≤m U .

CC BY-NC-SA 2.0 Version February 22, 2023 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}

Example string in ETM is . Example string not in ETM is .

ETM is decidable / undecidable and recognizable / unrecognizable .

ETM is decidable / undecidable and recognizable / unrecognizable .

Claim: ≤m ETM .

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ ATM iff F (x) /∈ ETM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x⟩.”

Verifying correctness:

Input string Output string
⟨M,w⟩ where w ∈ L(M)

⟨M,w⟩ where w /∈ L(M)

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version February 22, 2023 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

EQTM = {⟨M,M ′⟩ | M and M ′ are both Turing machines and L(M) = L(M ′)}

Example string in EQTM is . Example string not in EQTM is .

EQTM is decidable / undecidable and recognizable / unrecognizable .

EQTM is decidable / undecidable and recognizable / unrecognizable .

To prove, show that ≤m EQTM and that ≤m EQTM .

Verifying correctness:

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version February 22, 2023 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week9 friday

In practice, computers (and Turing machines) don’t have infinite tape, and we can’t afford to wait un-
boundedly long for an answer. “Decidable” isn’t good enough - we want “Efficiently decidable”.

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the
running time depend on the input in the worst-case? average-case? We expect to have to spend more time
on computations with larger inputs.

A language is recognizable if

A language is decidable if

A language is efficiently decidable if

A function is computable if

A function is efficiently computable if

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N → N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: TIME(1) ⊆ TIME(n) ⊆ TIME(n2)

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
⋃
k

TIME(nk)

Compare to exponential time: brute-force search.

Theorem (Sipser 7.8): Let t(n) be a function with t(n) ≥ n. Then every t(n) time deterministic multitape
Turing machine has an equivalent O(t2(n)) time deterministic 1-tape Turing machine.

CC BY-NC-SA 2.0 Version February 22, 2023 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition (Sipser 7.9): For N a nodeterministic decider. The running time of N is the function f : N → N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
⋃
k

NTIME(nk)

True or False: TIME(n2) ⊆ NTIME(n2)

True or False: NTIME(n2) ⊆ DTIME(n2)

Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force
approach

PATH = {⟨G, s, t⟩ | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {⟨x, y⟩ | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic
solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {⟨G, s, t⟩ | G is digraph with n nodes, there is path from s to t that goes through every node exactly once}

V ERTEX − COV ER = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-clique}

SAT = {⟨X⟩ | X is a satisfiable Boolean formula with n variables}

CC BY-NC-SA 2.0 Version February 22, 2023 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week8 monday

Theorem: ATM is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides ATM . We call this
presumed machine MATM .

By assumption, for every Turing machine M and every string w

• If w ∈ L(M), then the computation of MATM on ⟨M,w⟩

• If w /∈ L(M), then the computation of MATM on ⟨M,w⟩

Define a new Turing machine using the high-level description:

D =“ On input ⟨M⟩, where M is a Turing machine:

1. Run MATM on ⟨M, ⟨M⟩⟩.
2. If MATM accepts, reject; if MATM rejects, accept.”

Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on ⟨D⟩?

CC BY-NC-SA 2.0 Version February 22, 2023 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Give an example of a decidable set:

Give an example of a recognizable undecidable set:

Give an example of an unrecognizable set:

CC BY-NC-SA 2.0 Version February 22, 2023 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: The class of Turing-decidable languages is closed under complementation?

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

Week8 wednesday

Mapping reduction

Motivation: Proving that ATM is undecidable was hard. How can we leverage that work? Can we relate
the decidability / undecidability of one problem to another?

If problem X is no harder than problem Y

. . . and if Y is easy,

. . . then X must be easy too.

If problem X is no harder than problem Y

. . . and if X is hard,

. . . then Y must be hard too.

“Problem X is no harder than problem Y ” means “Can answer questions about membership in X by
converting them to questions about membership in Y ”.

Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

CC BY-NC-SA 2.0 Version February 22, 2023 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Computable functions

Definition: A function f : Σ∗ → Σ∗ is a computable function means there is some Turing machine such
that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Examples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted
as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when
interpreted as a fixed-width binary representation of a non-negative integer)

f1 : Σ
∗ → Σ∗ f1(x) = x0

To prove f1 is computable function, we define a Turing machine computing it.

High-level description

“On input w

1. Append 0 to w.

2. Halt.”

Implementation-level description

“On input w

1. Sweep read-write head to the right until find first blank cell.

2. Write 0.

3. Halt.”

Formal definition ({q0, qacc, qrej}, {0, 1}, {0, 1, }, δ, q0, qacc, qrej) where δ is specified by the state diagram:

CC BY-NC-SA 2.0 Version February 22, 2023 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The function that maps a string to the result of repeating the string twice.

f2 : Σ
∗ → Σ∗ f2(x) = xx

The function that maps strings that are not the codes of Turing machines to the empty string and that
maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing
machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new
machine will go into a loop.

f3 : Σ
∗ → Σ∗ f3(x) =

{
ε if x is not the code of a TM

⟨(Q ∪ {qtrap},Σ,Γ, δ′, q0, qacc, qrej)⟩ if x = ⟨(Q,Σ,Γ, δ, q0, qacc, qrej)⟩

where qtrap /∈ Q and

δ′((q, x)) =

{
(r, y, d) if q ∈ Q, x ∈ Γ, δ((q, x)) = (r, y, d), and r ̸= qrej

(qtrap, , R) otherwise

CC BY-NC-SA 2.0 Version February 22, 2023 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The function that maps strings that are not the codes of CFGs to the empty string and that maps strings
that code CFGs to the code of a PDA that recognizes the language generated by the CFG.

Other examples?

Week8 friday

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

Example: ATM ≤m ATM

Example: ADFA ≤m {ww | w ∈ {0, 1}∗}

Example: {0i1j | i ≥ 0, j ≥ 0} ≤m ATM

Theorem (Sipser 5.22): If A ≤m B and B is decidable, then A is decidable.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.

CC BY-NC-SA 2.0 Version February 22, 2023 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Halting problem

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

Define F : Σ∗ → Σ∗ by

F (x) =

{
constout if x ̸= ⟨M,w⟩ for any Turing machine M and string w over the alphabet of M

⟨M ′, w⟩ if x = ⟨M,w⟩ for some Turing machine M and string w over the alphabet of M .

where constout = ⟨ , ε⟩ and M ′ is a Turing machine that computes like M except, if the
computation ever were to go to a reject state, M ′ loops instead.

F (⟨ , 001⟩) =

F (⟨ , 1⟩) =

CC BY-NC-SA 2.0 Version February 22, 2023 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To use this function to prove that ATM ≤m HALTTM , we need two claims:

Claim (1): F is computable

Claim (2): for every x, x ∈ ATM iff F (x) ∈ HALTTM .

Week6 monday

For Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) the computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible). Formally, transition function is

δ : Q× Γ → Q× Γ× {L,R}

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is

{w ∈ Σ∗ | computation of M on w halts after entering the accept state} = {w ∈ Σ∗ | w is accepted by M}

To define a Turing machine, we could give a

• Formal definition, namely the 7-tuple of parameters including set of states, input alphabet, tape
alphabet, transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

Conventions for drawing state diagrams of Turing machines: (1) omit the reject state from the diagram
(unless it’s the start state), (2) any missing transitions in the state diagram have value (qreject, , R).

CC BY-NC-SA 2.0 Version February 22, 2023 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Sipser Figure 3.10

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

Computation on input string 01#01

q1 ↓
0 1 # 0 1

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

CC BY-NC-SA 2.0 Version February 22, 2023 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L if means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Implementation level description: Implementation level description:

Example of string accepted: Example of string accepted:
Example of string rejected: Example of string rejected:

Decider? Yes / No Decider? Yes / No

Implementation level description: Implementation level description:

Example of string accepted: Example of string accepted:
Example of string rejected: Example of string rejected:

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version February 22, 2023 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 wednesday

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

True / False: NFAs and PDAs are equally expressive.

True / False: Regular expressions and CFGs are equally expressive.

Some examples of models that are equally expressive with deterministic Turing
machines:

May-stay machines The May-stay machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R, or Stay.

Formally: (Q,Σ,Γ, δ, q0, qaccept, qreject) where

δ : Q× Γ → Q× Γ× {L,R, S}

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine:

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Formally: suppose MS = (Q,Σ,Γ, δ, q0, qacc, qrej) has δ : Q × Γ → Q × Γ × {L,R, S}. Define the Turing-
machine

Mnew = ()

CC BY-NC-SA 2.0 Version February 22, 2023 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Multitape Turing machine A multitape Turing macihne with k tapes can be formally representated

as (Q,Σ,Γ, δ, q0, qacc, qrej) where Q is the finite set of states, Σ is the input alphabet with /∈ Σ, Γ is the
tape alphabet with Σ ⊊ Γ , δ : Q× Γk → Q× Γk × {L,R}k (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape
and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

Extra practice: Wikipedia Turing machine Define a machine (Q,Γ, b,Σ, q0, F, δ) where Q is the finite
set of states Γ is the tape alphabet, b ∈ Γ is the blank symbol, Σ ⊊ Γ is the input alphabet, q0 ∈ Q is the
start state, F ⊆ Q is the set of accept states, δ : (Q \ F) × Γ ̸→ Q × Γ × {L,R} is a partial transition
function If computation enters a state in F , it accepts If computation enters a configuration where δ is not
defined, it rejects . Hopcroft and Ullman, cited by Wikipedia

CC BY-NC-SA 2.0 Version February 22, 2023 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Enumerators Enumerators give a different model of computation where a language is produced, one
string at a time, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation
proceeds according to transition function; at any point machine may “send” a string to the printer.

E = (Q,Σ,Γ, δ, q0, qprint)

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet (Σ ⊊ Γ, ∈ Γ \ Σ),

δ : Q× Γ× Γ → Q× Γ× Γ× {L,R} × {L,R}

where in state q, when the working tape is scanning character x and the printer tape is scanning character
y, δ((q, x, y)) = (q′, x′, y′, dw, dp) means transition to control state q′, write x′ on the working tape, write y′

on the printer tape, move in direction dw on the working tape, and move in direction dp on the printer tape.
The computation starts in q0 and each time the computation enters qprint the string from the leftmost edge
of the printer tape to the first blank cell is considered to be printed.

The language enumerated by E, L(E), is {w ∈ Σ∗ | E eventually, at finite time, prints w}.

q0
∗
∗

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it. Proof next time . . .

CC BY-NC-SA 2.0 Version February 22, 2023 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 friday

To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof:

Assume L is enumerated by some enumerator, E, so L = L(E). We’ll use E in a subroutine within a
high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine ME with L(ME) = L(E).

Define ME as follows: ME = “On input w,

1. Run E. For each string x printed by E.

2. Check if x = w. If so, accept (and halt); otherwise, continue.”

Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We’ll use M in a
subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator EM with L(EM) = L(M).

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don’t halt.

Recall String order for Σ = {0, 1}: s1 = ε, s2 = 0, s3 = 1, s4 = 00, s5 = 01, s6 = 10, s7 = 11, s8 = 000, . . .

Define EM as follows: EM = “ ignore any input. Repeat the following for i = 1, 2, 3, . . .

1. Run the computations of M on s1, s2, . . . , si for (at most) i steps each

2. For each of these i computations that accept during the (at most) i steps, print out the accepted
string.”

CC BY-NC-SA 2.0 Version February 22, 2023 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibil-
ities: (Q,Σ,Γ, δ, q0, qacc, qrej) where

δ : Q× Γ → P(Q× Γ× {L,R})

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the
computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when
some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-
first search of computation tree: one tape is “read-only” input tape, one tape simulates the tape of the
nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version February 22, 2023 (23)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof using Turing machines:

Proof using nondeterministic Turing machines:

Proof using enumerators:

Week7 monday

Suppose M is a TM Suppose D is a TM Suppose E is an enumerator
that recognizes L that decides L that enumerates L

If string w is in L then . . .

If string w is not in L then . . .

Describing Turing machines (Sipser p. 185)

The Church-Turing thesis posits that each algorithm can be implemented by some Turing machine

High-level descriptions of Turing machine algorithms are written as indented text within quotation marks.

Stages of the algorithm are typically numbered consecutively.

The first line specifies the input to the machine, which must be a string. This string may be the encoding
of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are Turing machines that can be called as subroutines to decode the string represen-
tations of common objects and interact with these objects as intended (data structures).

CC BY-NC-SA 2.0 Version February 22, 2023 (24)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version February 22, 2023 (25)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w ∈ L(M)}
={⟨M,w⟩ | M is a DFA, w is a string, w ∈ L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ∅}
={⟨G⟩ | G is a CFG, L(G) = ∅}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={⟨M⟩ | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

Some classes of computational problems help us understand the differences between the ma-
chine models we’ve been studying:

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}
Sipser Section 4.1

CC BY-NC-SA 2.0 Version February 22, 2023 (26)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M1 M2 M3

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

Food for thought: which of the following computational problems are decidable: ADFA?, EDFA?, EQDFA?

CC BY-NC-SA 2.0 Version February 22, 2023 (27)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 wednesday

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

Acceptance problem
for . . . A... {⟨B,w⟩ | B is a . . . that accepts input string w}
Language emptiness testing
for . . . E... {⟨A⟩ | A is a . . . and L(A) = ∅}
Language equality testing
for . . . EQ... {⟨A,B⟩ | A and B are . . . and L(A) = L(B)}
Sipser Section 4.1

M1 = “On input ⟨M,w⟩, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulations ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is L(M1) a decider?

M2 =“On input ⟨M,w⟩ where M is a DFA and w is a string,

1. Run M on input w.

2. If M accepts, accept; if M rejects, reject.”

What is L(M2)?

Is M2 a decider?

CC BY-NC-SA 2.0 Version February 22, 2023 (28)

https://creativecommons.org/licenses/by-nc-sa/2.0/

AREX =

ANFA =

True / False: AREX = ANFA = ADFA

True / False: AREX ∩ ANFA = ∅, AREX ∩ ADFA = ∅, ADFA ∩ ANFA = ∅

A Turing machine that decides ANFA is:

A Turing machine that decides AREX is:

CC BY-NC-SA 2.0 Version February 22, 2023 (29)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M3 =“On input ⟨M⟩ where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the alphabet of M (ordered in string order).

3. Run M on input si.

4. If M accepts, . If M rejects, increment i and keep going.”

Choose the correct option to help fill in the blank so that M3 recognizes EDFA

A. accepts

B. rejects

C. loop for ever

D. We can’t fill in the blank in any way to make this work

E. None of the above

M4 = “ On input ⟨M⟩ where M is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get marked:

3. Loop over the states of M .

4. Mark any unmarked state that has an incoming edge from a marked state.

5. If no accept state of A is marked, ; otherwise, ”.

To build a Turing machine that decides EQDFA, notice that

L1 = L2 iff ((L1 ∩ L2) ∪ (L2 ∩ L1)) = ∅

There are no elements that are in one set and not the other

MEQDFA =

CC BY-NC-SA 2.0 Version February 22, 2023 (30)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

Week7 friday

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

CC BY-NC-SA 2.0 Version February 22, 2023 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Acceptance problem
for Turing machines ATM {⟨M,w⟩ | M is a Turing machine that accepts input string w}
Language emptiness testing
for Turing machines ETM {⟨M⟩ | M is a Turing machine and L(M) = ∅}
Language equality testing
for Turing machines EQTM {⟨M1,M2⟩ | M1 and M2 are Turing machines and L(M1) = L(M2)}
Sipser Section 4.1

M1

M2

M3

Example strings in ATM

Example strings in ETM

Example strings in EQTM

CC BY-NC-SA 2.0 Version February 22, 2023 (32)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem: ATM is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine RATM such that L(RATM) = ATM .

Define RATM = “

Proof of correctness:

We will show that ATM is undecidable. First, let’s explore what that means.

CC BY-NC-SA 2.0 Version February 22, 2023 (33)

https://creativecommons.org/licenses/by-nc-sa/2.0/

ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

• The set of all Turing machines is countably infinite.

• Each Turing-recognizable language is associated with a Turing machine in a one-to-one relationship,
so there can be no more Turing-recognizable languages than there are Turing machines.

• Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

• Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(Σ∗) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

CC BY-NC-SA 2.0 Version February 22, 2023 (34)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 wednesday

Recall: For M a deterministic decider, its running time is the function f : N → N given by

f(n) = max number of steps M takes before halting, over all inputs of length n

For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

P =
⋃
k

TIME(nk)

Definition (Sipser 7.9): For N a nodeterministic decider. The running time of N is the function f : N → N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
⋃
k

NTIME(nk)

True or False: TIME(n2) ⊆ NTIME(n2)

True or False: NTIME(n2) ⊆ DTIME(n2)

Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check
if it works.

CC BY-NC-SA 2.0 Version February 22, 2023 (35)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force
approach

PATH = {⟨G, s, t⟩ | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {⟨x, y⟩ | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic
solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {⟨G, s, t⟩ | G is digraph with n nodes,

there is path from s to t that goes through every node exactly once}

V ERTEX − COV ER = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with n nodes that has a k-clique}

SAT = {⟨X⟩ | X is a satisfiable Boolean formula with n variables}

Problems in P Problems in NP
(Membership in any) regular language Any problem in P

(Membership in any) context-free language
ADFA SAT
EDFA CLIQUE
EQDFA V ERTEX − COV ER
PATH HAMPATH

RELPRIME . . .
. . .

CC BY-NC-SA 2.0 Version February 22, 2023 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for hardest problems in NP and then (1) if we can show
that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so
P = NP , or (2) these problems might be good candidates for showing that there are problems in NP for
which there are no efficient algorithms.

Definition (Sipser 7.29) Language A is polynomial-time mapping reducible to language B, written
A ≤P B, means there is a polynomial-time computable function f : Σ∗ → Σ∗ such that for every x ∈ Σ∗

x ∈ A iff f(x) ∈ B.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If A ≤P B and B ∈ P then A ∈ P .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin’s work in the 1970s): A language B is
NP-complete means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and B ∈ P then P = NP .

Proof:

CC BY-NC-SA 2.0 Version February 22, 2023 (37)

https://creativecommons.org/licenses/by-nc-sa/2.0/

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3cnf-formula}

Example strings in 3SAT

Example strings not in 3SAT

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.

CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

Example strings in CLIQUE

Example strings not in CLIQUE

Theorem (Sipser 7.32):
3SAT ≤P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)

CC BY-NC-SA 2.0 Version February 22, 2023 (38)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week10 friday

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version February 22, 2023 (39)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version February 22, 2023 (40)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version February 22, 2023 (41)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε

CC BY-NC-SA 2.0 Version February 22, 2023 (42)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version February 22, 2023 (43)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version February 22, 2023 (44)

https://creativecommons.org/licenses/by-nc-sa/2.0/

