STUDENT N	AME
Search stu	idents by name or email
Q1 Turi 2 Points	ng machine vocabulary
Which of th	ne following sentences make sense? (Some are true and some are
false sele whether th	ect all and only those that "type check" correctly, regardless of ey are true or false).
A lan	guage is a decider if it always halts.
The u	nion of two deciders is a decider.
🗌 A lan	guage is decidable if and only if it is recognizable.
There	e is a Turing machine that isn't decidable.
There mach	e is a recognizable language that isn't decided by any Turing ine.

Q2 Implementation level definition of TM ³ Points

Consider the following state diagrams of four Turing machines over the input alphabet $\{0, 1\}$. (We use the convention that q_{rej} may sometimes be omitted from the diagram and that all missing transitions are directed to it.)

 M_1

 M_2

 M_3

 M_4

Q2.1 (a)

1 Point

The implementation level definition below agrees with which of the machines whose state diagrams are above?

"On input w:

- 1. If w is the empty string, accept.
- 2. Otherwise, reject."

- $O M_1$
- $O M_2$
- $O M_3$
- $O M_4$
- O None of the above.

Q2.2 (b)

1 Point

The implementation level definition below agrees with which of the machines whose state diagrams are above?

"On input w:

- 1. If w is the empty string, accept.
- 2. Otherwise, sweep through the tape from left to right, erasing all input characters, until you reach the end of w, and accept."

 $O M_1$

- $O M_2$
- $O M_3$
- $O M_4$
- O None of the above.

Save Answer

Q2.3 (c)

1 Point

The implementation level definition below agrees with which of the machines whose state diagrams are above?

"On input w:

1. Sweep through the tape from left to right, looking for first nonblank symbol.

2. When current cell has a 0 or 1, reject."	
$O M_1$	
$O M_2$	
$O M_3$	
$O~M_4$	
O None of the above.	
Q3 Feedback 0 Points Any feedback about this week's material or co	mments you'd like to share?
Q3 Feedback 0 Points Any feedback about this week's material or co (Optional; not for credit)	mments you'd like to share?
Q3 Feedback 0 Points Any feedback about this week's material or co (Optional; not for credit) Enter your answer here	mments you'd like to share?
Q3 Feedback O Points Any feedback about this week's material or co (Optional; not for credit) Enter your answer here Save Answer	mments you'd like to share?

Week 6 Wednesday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Looping for Turing machines

1 Point

True or False: If the input to a TM is finite, then at some point, the TM has to be able to finish reading it. Therefore, infinite looping can only happen when the input takes up the whole TM tape (which is infinitely long).

-

O True

O False

Save Answer

Q2 Variants of Turing machines

1 Point

Select all and only true statements below.

Q3 Equally expressive models of computation 1 Point

True or False: as part of a proof that a model of computation is equally expressive to (1-tape deterministic) Turing machines, we can add special symbols to the tape alphabet of the Turing machine being constructed to help it simulate the other model.

O True

O False

Save Answer

Q4 Classifying languages

2 Points

Select all and only the true statements below.

 If a language is not context-fr Every regular language is Tur 	ree then it is Turing-decidable.
All context-free languages ar	e Turing-decidable.
Save Answer	
Q5 Feedback	
Q5 Feedback O Points Any feedback about this week's m share? (Optional; not for credit)	aterial or comments you'd like to
Q5 Feedback O Points Any feedback about this week's m share? (Optional; not for credit) Enter your answer here	aterial or comments you'd like to
Q5 Feedback O Points Any feedback about this week's m share? (Optional; not for credit) Enter your answer here Save Answer	aterial or comments you'd like to

STUDENT NAME		
Search students	s by name or email 🔻	
Q1 Implem 1 Point	entation level definition of TMs	
What is allowed Turing machine	when giving an implementation-level description of a ? (Select all and only that apply)	
Give the s	even-tuple defining a Turing machine	
Build new shown res $L(A)^R$ ")	machines from existing machines using previously ults (e.g. "Construct an NFA B such that $L(B)=$	
Mention the right until a	ne tape or its contents (e.g. "Scan the tape from left to a blank is seen.")	
Use other	Turing machines as subroutines (e.g. "Run N on w ")	
Mention the end of	ne tape head (e.g. "Return the tape head to the left tape.")	
Mention the reject state	ne states of the machine (e.g. "Swap the accept and es.")	
Use previo	busly shown conversions and constructions (e.g. equilar expression R to an NFA N ")	

Q2 High level description of TMs

1 Point

What is allowed when giving a high-level description of a Turing machine? (Select all and only that apply)

Give the seven-tuple defining a Turing machine

Build new machines from existing machines using previously shown results (e.g. "Construct an NFA B such that $L(B) = L(A)^{R}$ ")

Mention the tape or its contents (e.g. "Scan the tape from left to right until a blank is seen.")

 \Box Use other Turing machines as subroutines (e.g. "Run N on w")

Mention the tape head (e.g. "Return the tape head to the left end of the tape.")

Mention the states of the machine (e.g. "Swap the accept and reject states.")

Use previously shown conversions and constructions (e.g. "Convert regular expression R to an NFA N")

Save Answer

Q3 High level descriptions of Turing machines ⁴ Points

Suppose M_1 and M_2 are Turing machines. Consider the Turing machines given by the high-level descriptions:

"M = On input w,

1. Run M_1 on input w. If M_1 accepts w, accept. If M_1 rejects w, go to 2.

2. Run M_2 on input w. If M_2 accepts w, accept. If M_2 rejects w, reject."

"M' = On input w,

1. Run M_1 on input w. If M_1 rejects w, reject. If M_1 accepts w, go to 2.

2. Run M_2 on input w. If M_2 rejects w, reject. If M_2 accepts w, accept."

For each of the following claims, answer Always true if the statement is true for all possible M_1 and M_2 ; answer Always false if the statement is false for all possible M_1 and M_2 ; and answer Neither otherwise.

Q3.1 (a)

1 Point

If $w \in L(M_1)$ then $w \in L(M)$.

- Always true
- O Always false
- O Neither

If $w \in L(M_2)$ then $w \in L(M)$.

- O Always true
- O Always false
- Neither

✓ Correct

Save Answer

Last saved on May 15 at 10:36 PM

Q3.2 (b)

1 Point

If $w \notin L(M_1)$ then $w \notin L(M)$.

O Always true

O Always false

O Neither

If $w \notin L(M_2)$ then $w \notin L(M).$

O Always true

O Always false

O Neither

Save Answer

Q3.3 (C) 1 Point

If $w \in L(M_1)$ then $w \in L(M').$

- O Always true
- O Always false

O Neither

If $w \in L(M_2)$ then $w \in L(M').$

- O Always true
- O Always false
- O Neither

Save Answer

Q3.4 (d)

1 Point

If $w \notin L(M_1)$ then $w \notin L(M')$.

O Always true				
O Always false				
O Neither				
If $w otin L(M_2)$ then	n $w otin L(M').$			
O Always true				
O Always false				
O Neither				
Save Answer				
Q4 Feedback	<			
Q4 Feedback	(t this week's materia	or commer	its you'd like to	
Q4 Feedback 0 Points Any feedback abou share? (Optional; no	K t this week's materia ot for credit)	or commer	its you'd like to	
Q4 Feedback 0 Points Any feedback abou share? (Optional; no Enter your answe	K t this week's materia ot for credit) er here	or commer	its you'd like to	
Q4 Feedback 0 Points Any feedback about share? (Optional; not Enter your answer Save Answer	K t this week's materia ot for credit) er here	or commer	its you'd like to	

TUDENT NAME		
Sea	arch students by name or email	
21 Poi	Computational problems	
Sele	ct all and only true statements below.	
	The Church-Turing theses says that the intuitive notion of algorithms exactly equals Turing machine algorithms.	
	A computational problem is a question that is asked about strings or machines or algorithms.	
	To describe low-level programming of Turing machines, we use formal definitions (and, potentially state diagrams)	
	To describe memory management and implementing data access with data structures, we use implementation-level description.	
	The input to a Turing machine is always a string.	
	The format of the input to a Turing machine can be checked to interpret this string as representing structured data (like the formal definition of a DFA, another Turing machine, etc.)	

Q2 Computational problems about DFA

4 Points

We define the following computational problems about DFAs over a fixed alphabet $\boldsymbol{\Sigma}.$

 $\begin{array}{l} A_{DFA} = \{ \langle M, w \rangle \mid M \text{ is a DFA over } \Sigma \text{ and } w \in \\ \Sigma^* \text{ and } w \in L(M) \} \\ E_{DFA} = \{ \langle M \rangle \mid M \text{ is a DFA over } \Sigma \text{ and } L(M) = \emptyset \} \\ ALL_{DFA} = \{ \langle M \rangle \mid M \text{ is a DFA over } \Sigma \text{ and } L(M) = \Sigma^* \} \\ INF_{DFA} = \\ \{ \langle M \rangle \mid M \text{ is a DFA over } \Sigma \text{ and } L(M) \text{ is infinite} \} \end{array}$

Q2.1 (a)

2 Points

Select all and only the true statements below.

Save Answer

Q2.2 (b) 2 Points

Select all and only the true statements below.

$\ \ \bigsqcup \ A_{DFA} \cap E_{DFA} = \emptyset$	
$\Box \ E_{DFA} \cap ALL_{DFA} = \emptyset$	
$\Box \ E_{DFA} \cap INF_{DFA} = \emptyset$	
$\Box \ ALL_{DFA} \cap INFDFA = \emptyset$	
Save Answer	
03 Feedback	
Q3 Feedback 0 Points	
Q3 Feedback 0 Points Any questions or comments about this for credit)	week's material? (Optional; not
Q3 Feedback 0 Points Any questions or comments about this for credit) Enter your answer here	week's material? (Optional; not
Q3 Feedback 0 Points Any questions or comments about this for credit) Enter your answer here	week's material? (Optional; not
Q3 Feedback 0 Points Any questions or comments about this of for credit) Enter your answer here Save Answer	week's material? (Optional; not
Q3 Feedback 0 Points Any questions or comments about this for credit) Enter your answer here Save Answer	week's material? (Optional; not

Week 7 Wednesday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Example strings

3 Points

Consider the following three DFA over the alphabet $\{0,1\},$ whose state diagrams are below.

A1

-

Select all and only true statements below.

Q2 Acceptance problems

1 Point

Select all and only the acceptance problems below that are decidable.

] The acceptance problem for DFA, A_{DFA}

] The acceptance problem for NFA, A_{NFA}

 \Box The acceptance problem for regular expressions, A_{REX}

] The acceptance problem for PDA, A_{PDA}

 \Box The acceptance problem for CFG, A_{CFG}

Save Answer

elect all and or	ly the emptinnes problems below that are decidable.
The emptir	ness problem for DFA, E_{DFA}
The emptir	ness problem for NFA, E_{NFA}
The emptir	ness problem for regular expressions, E_{REX}
The emptir	ness problem for PDA, E_{PDA}
The emptir	ness problem for CFG, E_{CFG}
94 Feedba Points Iny feedback al hare? (Optional	ack bout this week's material or comments you'd like to ; not for credit)
94 Feedba Points any feedback al hare? (Optional Enter your ans	ack bout this week's material or comments you'd like to ; not for credit) swer here

Q2 Turing machines

1 Point

How many Turing machines are there?

- O Finitely many, because each Turing machine is defined by 7 parameters $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$
- ${\rm O}$ Countably infinitely many, because each Turing machine M is encoded by some string $\langle M\rangle$ and there are only countably many strings.
- O Uncountably infinitely many, because there are uncountably many sets of strings and each TM recognizes some set of strings.

Save Answer

Q3 Type-checking input in TMs

Consider the Turing machine X, defined as follows:

"On input $\langle M,w
angle$ where M is a Turing machine and w is a string:" (where the ... are filled in with the steps of the algorithm).

What happens if we run X on input string x, where x is not of the form $\langle M,w
angle$ for any Turing machine M or string w?

- **O** The computation of X on x gets stuck and does not proceed to step 1.
- **O** The computation of X on x implicitly type checks x and rejects.
- **O** The computation of X on x defaults to accept the string when it's not of the declared type.
- O The computation of X on x runs all possible computations of X on input $\langle M,w
 angle$ for any TM M.

Save Answer

Q4 A_{TM} 1 Point

Consider the Turing machine over $\{0,1\}$ defined by the high-level description:

M = "On input w: 1. If w is nonempty, accept. 2. Otherwise, let i=1, while (i>0), increment i by 1."

Select all and only the true statements below.

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$igcap \langle M,0 angle\in A_{TM}$	
Save Answer	
Q5 Feedback ⁰ Points	
Q5 Feedback O Points Any feedback about today's mater (Optional; not for credit)	rial or comments you'd like to share
Q5 Feedback O Points Any feedback about today's mater (Optional; not for credit) Enter your answer here	rial or comments you'd like to share
Q5 Feedback O Points Any feedback about today's mater (Optional; not for credit) Enter your answer here Save Answer	rial or comments you'd like to share

Week 8 Monday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 ATM: examples

2 Points

Consider the following Turing machines over the alphabet $\{0,1\}$, whose state diagrams are below.

-

M1

M2

Select all and only true statements below.

 $] A_{TM}$ is non-context-free

igsquare A_{TM} is undecidable

Save Answer

T	ne class of reg	ular languag	es is closed	under
C	omplementatio	n		
T C	ne class of cor omplementatic	ntext-free lan on	guages is cl	osed under
T C	ne class of dec omplementatic	cidable langu on	ages is clos	ed under
	ne class of rec omplementatic	ognizable lar on	nguages is c	losed under
	ne class of unc omplementatic	decidable lan on	guages is cl	osed under
T C	ne class of unr omplementatic	ecognizable on	languages i	s closed under
Save	Answer			
34 F	eedback			
	edback about 1 (Optional; not	this week's m for credit)	naterial or co	omments you'd like to
hare?		here		
hare? Ente	r your answer			

Week 8 Wednesday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Computable functions

2 Points

Recall that a function $f: \Sigma^* \to \Sigma^*$ is computable means that there is some Turing machine M such that, on every input w, halts with just f(w) on its tape.

-

Q1.1 (a)

1 Point

Select all and only the functions below that are computable.

- \Box The function $f_1: \{0,1\}^* o \{0,1\}^*$ such that $f_1(arepsilon) = 001$ and $f_1(x) = arepsilon$ for all x
 eq arepsilon.
- \Box The function $f_2: \{0,1\}^* o \{0,1\}^*$ such that $f_2(x) = 0x0$ (i.e. the concatenation of 0 with x followed by a 0).

Save Answer

Q1.2 (b) 1 Point

True or False: The function

 $egin{aligned} f_3(x) = \ & \left\{ egin{aligned} 0 & if \ some-classes-meet-outside-in-Fall \ 1 & otherwise \end{aligned}
ight. \end{aligned}
ight.$

is a computable function with domain Σ^* and codomain Σ^*

- **O** False, because the function f_3 is not well-defined.
- old O False, because the function f_3 cannot be computed by any Turing machine.
- **O** True, because the function f_3 is a constant function (even though we may not know right now which constant value it outputs)

Save Answer

Q2 Mapping reduction

4 Points

Recall that mapping reduction is defined in section 5.3: The problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Fix $\Sigma = \{0,1\}$ throughout this question.

Select all and only the true statements below.

Save Answer

Q3 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here
Save Answer

Week 8 Friday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Mapping reduction identities

2 Points

Fix $\Sigma = \{0,1\}$ for this question.

Q1.1 (a)

1 Point

Select all and only the true statements.

For languages A, B if A mapping reduces to B and B mapping reduces to A then A = B.

For languages A, B, C if A mapping reduces to B and B mapping reduces to C then A mapping reduces to C.

For languages A, B if A mapping reduces to B then B mapping reduces to A.

Save Answer

Q1.2 (b) 1 Point

Select all and only the true statements.

Q2 Computable functions for mapping reductions

2 Points

Fix $\Sigma = \{0,1\}$ and define $const_{out} \in \Sigma^*$ to be a string constant that is not the code of any pair of the form $\langle M, w \rangle$, where M is a Turing machine and w is a string.

Consider the computable function defined by the high-level description of the TM computing it:

F = "On input x:

1. If $x
eq \langle M, w
angle$ for any Turing machine M and string w, output $const_{out}.$

2. Otherwise, let M be the Turing machine and w the string such that $x=\langle M,w
angle.$

3. Define the Turing machine M' as : "On input y,

1. Run M on y^R . If it accepts, accept. If it rejects, reject." 4. Output $\langle M', w^R \rangle$."

Q2.1 (a)

1 Point

True or False: For all strings x, if $x \in A_{TM}$ then $F(x) \in HALT_{TM}$

O True

O False

True or False: For all strings x , if $F(x)$	$\in HALT_{TM}$ then $x\in A_{TM}$
O True	
O False	
Save Answer	
Q2.2 (b) 1 Point	
True or False: For all strings x , if $x\in H$	$FALT_{TM}$ then $F(x)\in A_{TM}$
O True	
O False	
Save Answer Q3 Feedback 0 Points Any feedback about this week's materia	al or comments you'd like to
share? (Optional; not for credit)	
Enter your answer here	
Save Answer	
Save All Answers	Submit & View Submission
	L

STUDENT NAME

Search students by name or email...

Q1 Mapping reductions

1 Point

True or false: If A mapping reduces to B and B mapping reduces to A then A=B.

O True

O False

Save Answer

Q2 Mapping reductions

2 Points

Select all and only true statements.

 \Box For all sets $A, A \leq_m A$

 $\hfill \ensuremath{\:\square}$ For all sets A and B, if $A \leq_m B$ then $B \leq_m A$

 $\hfill \label{eq:and_bar}$ For all unequal sets A and B, if $A\leq_m B$ then it is not the case that $B\leq_m A$

 $\hfill There are distinct sets <math display="inline">A$ and B where $A \leq_m B$ and $B \leq_m A$

Save Answer

Q3	Mapping	reducibility
----	---------	--------------

2 Points

Fix the alphabet to be $\{0,1\}$. Which languages over this alphabet mapping reduce to the set $\{0,1,00,11\}$? (Select all that apply)

-	
The set of all strings.	
Any decidable language L that all strings	is nonempty and not the set of
$\Box A_{TM}$	
Save Answer	
24 Feedback	
94 Feedback Points Any feedback about this week's mat	erial or comments you'd like to
94 Feedback) Points Any feedback about this week's mat hare? (Optional; not for credit)	erial or comments you'd like to
Q4 Feedback Points Any feedback about this week's mat chare? (Optional; not for credit) Enter your answer here	erial or comments you'd like to
Q4 Feedback) Points Any feedback about this week's mat share? (Optional; not for credit) Enter your answer here Save Answer	erial or comments you'd like to
Q4 Feedback) Points Any feedback about this week's mat share? (Optional; not for credit) Enter your answer here Save Answer	erial or comments you'd like to
Q4 Feedback D Points Any feedback about this week's mat share? (Optional; not for credit) Enter your answer here Save Answer	erial or comments you'd like to

Which of the following languages are recognizable? (Select all that apply)

Q3 Mapping reductions

1 Point

What can you conclude from knowing that A_TM mapping reduces to a language L? (Select all that apply)

L is undecidable	
L is empty	
L is infinite	
L is recognizable	
L is unrecognizable	
Q4 Feedback	
Q4 Feedback O Points Any questions or feedback a (Optional; not for credit)	about this week's material?
Q4 Feedback 0 Points Any questions or feedback a (Optional; not for credit) Enter your answer here	about this week's material?
Q4 Feedback O Points Any questions or feedback a (Optional; not for credit) Enter your answer here Save Answer	about this week's material?

Week 9 Friday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Languages in P

2 Points

Which of the following languages are in P? (Select all that apply)

 $\square \ ALL_{DFA} = \{ <\!\!A\!\!> \mid A ext{ is a DFA over } \Sigma ext{ and } L(A) = \Sigma^* \}$

-

- $\Box \ E_{DFA} = \{ <\!\!A \!\!> \mid A \text{ is a DFA and } L(A) \text{ is empty } \}$
- $\Box \ E_{TM} = \\ \{ <\!\! M\! > \mid M \text{ is a TM over } \Sigma \text{ and } L(M) \text{ is empty } \}$

 $igsquigarrow EQ_{TM} = \{ <\!M_1, M_2 > \mid M_1, M_2 ext{ are TMs and } L(M_1) = L(M_2) \}$

Save Answer

Q2 Time complexity 3 Points

Q2.1 (a)

2 Points

Select all and only the classes below that equal one another.

Q2.2 (b) 1 Point

Which of the following is a subset of all others in the list?

- **O** TIME (n^2)
- **O** NTIME (n^2)
- **O** TIME(n)
- **O** NTIME (n^3)

Save Answer

Q3 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here	
Save Answer	