Week 3 Friday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 Cardinality of sets

2 Points
Which of the following sets are countably infinite? (select all that apply)
The set of all languages over $\{0,1\}$

The set of all regular languages over $\{0,1\}$The set of all strings over $\{0,1\}$The set $\{0,1\}$

The set of all DFAs over $\{0,1\}$ (whose states are labelled by integers)

The set of all regular expressions over $\{0,1\}$

Save Answer

Q2 True/ False

3 Points

True/ False: Every proper subset of a regular set is regular.

O True
O False

True/ False: Every proper subset of a nonregular set is nonregular.
O True
O False

True/ False: The complement of a regular set is regular.
O True
O False

True/False: The complement of a nonregular set is nonregular
O True
O False

True/ False: The union of any two regular sets is regular.
O True
O False

True/ False: The union of two nonregular sets is nonregular.
O True
O False

```
Save Answer
```


Q3 Feedback

0 Points
Any feedback about this week's material or comments you'd like to share?
(Optional; not for credit)

Enter your answer here
Save Answer

Week 4 Monday Review Quiz

STUDENT NAME
Search students by name or email...

Q1 Pumping lemma

1 Point

Select all and only the statements that are (informally) equivalent to the pumping lemma.

Every regular language has a pumping length.

Every nonregular language does not have a pumping length.

If L has a pumping length, then L is regular.

If L does not have a pumping length, then L is nonregular.

```
Save Answer
```


Q2 Applying pumping lemma

2 Points
In a proof that a language is nonregular using the pumping lemma, which of the following variables represent witnesses whose value we (as the provers) define? (Select all and only that apply)
The positive integer p
The string s
The string x
The string y
The string z
The nonnegative integer i

```
Save Answer
```


Q3 Nonregular sets

2 Points
Select and only the languages below that are nonnregular.

$$
\begin{aligned}
& \left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& \left\{0^{n} 1^{m} \mid n, m \geq 0\right\} \\
& \left\{0^{n} 1^{m} \mid 0 \leq n \leq m\right\} \\
& \left\{0^{n} 1^{m} \mid 0 \leq m \leq n\right\} \\
& \left\{0^{n} 1^{m} 0^{n} \mid n, m \geq 0\right\} \\
& \text { Save Answer }
\end{aligned}
$$

Q4 Extended Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Q4.1 What's working?

0 Points
What are you, as a student, doing that is helping your learning?

Enter your answer here

What are we, as course staff, doing that is helping your learning?
Enter your answer here

Save Answer

Q4.2 What can be improved?

0 Points
What can, as a student, change or start doing to improve your learning?

Enter your answer here

What can we, as course staff, change or start doing to improve your learning?

Enter your answer here

Additional information you would like to share with the instructor?

Enter your answer here

Save Answer

0 Points
Describe the single most confusing concept for you this quarter so far.

Enter your answer here

Describe the single most interesting concept for you this quarter so far.

Enter your answer here

Save Answer

Week 4 Wednesday Review Quiz

STUDENT NAME
Search students by name or email...

Q1 PDA

2 Points
Consider the PDA with input alphabet $\Sigma=\{0,1\}$, stack alphabet $\Gamma=\{0, \$\}$ and state diagram:

Q1.1 Accepted?

1 Point
Select all and only the strings below that are accepted by this PDA.
ε

\$

Q1.2 Stack

1 Point
True or false: if the PDA is in state $q 0$ then there must be a $\$$ somewhere in its stack.

O True
O False

True or false: if the PDA is in state $q 1$ then there must be a $\$$ somewhere in its stack.

O True
O False

```
Save Answer
```


Q2 Modified PDA

2 Points
Consider the PDA resulting from using the state diagram from Q1 and making $q 1$ and $q 2$ also accept states (putting double circles on these nodes).

Select all and only the strings below that are accepted by this new PDA.
\square

Q3 Formal definition of PDA

1 Point

Select the correct outputs for the transition function of the PDA from Q1. The state diagram is included again for reference:

$\delta((q 1,0, \varepsilon))=$
○ $q 1$
O $(q 1,0)$
O $(0, q 1)$
O $(q 2,1)$
O $(1, q 2)$
○ Ø
O None of the above.
$\delta((q 2,1, \varepsilon))=$

O $\{(q 2,0)\}$
O $\{(q 2, \varepsilon)\}$
O Ø
O None of the above.

```
Save Answer
```


Q4 Questions for class

0 Points

Any questions or concepts you'd like us to review together or explain in today's Zoom session? (Optional; not for credit)

Enter your answer here

Q5 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here

Save Answer

Week 4 Friday Review Quiz

STUDENT NAME
Search students by name or email...

Q1 PDA transition labels

5 Points

For this question, assume we have a PDA with input alphabet Σ and stack alphabet Γ.

Q1.1 (a)

1 Point
Select the correct meaning of the transition label
$a, b \rightarrow c$ when $a \in \Sigma, b \in \Gamma, c \in \Gamma$
O Upon reading a and when a b is at the top of the stack, pop the b and push a c while following this transition

O Upon reading a, if a b is at the top of the stack pop it and push a c while following this transition and if there is not \$b\$ at the top of the stack, leave the stack unchanged while following this transition.

Q1.2 (b)
1 Point
Select the correct meaning of the transition label
$a, \varepsilon \rightarrow c$ when $a \in \Sigma$ and $c \in \Gamma$
O Upon reading a and when the stack is empty, push a c while following this transition

O Upon reading a and without looking at the top of the stack, push a c while following this transition

```
Save Answer
```


Q1.3 (c)

1 Point
Select the correct meaning of the transition label
$a, b \rightarrow \varepsilon$ when $a \in \Sigma$ and $b \in \Gamma$
O Upon reading a and when $a b$ is at the top of the stack, clear the stack (make it empty) while following this transition

O Upon reading a and when a b is at the top of the stack, pop the b off the stack and do not push anything onto the stack while following this transition

O Upon reading a and when a b is at the top of the stack, add the character ε to be at the top of the stack while following this transition

```
Save Answer
```


Q1.4 (d)

1 Point
Select the correct meaning of the transition label

$$
a, \varepsilon \rightarrow \varepsilon \text { when } a \in \Sigma
$$

O Upon reading a and when the stack is empty, do not change the stack while following this transition

O Upon reading a, follow this transition no matter the current status of the stack (and without changing the stack)

```
Save Answer
```


Q1.5 (e)

1 Point
Select the correct meaning of the transition label
$\varepsilon, \varepsilon \rightarrow \varepsilon$
O Follow this transition without consuming any input characters and no matter the current status of the stack (and without changing the stack).

O When the computation has completed reading the input string, follow this transition when the stack is empty.

```
Save Answer
```


Q2 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here

Week 5 Monday Review Quiz

STUDENT NAME
Search students by name or email...

Q1 CFG definition

2 Points
Consider the CFG defined as $(\{A, B\},\{0,1\}, R, A)$ with rules $A \rightarrow 0 A 0|0 A 1| 1 A 0|1 A 1| 1$.

Q1.1 (a)
1 Point
Select all and only the examples below that are a variable for this CFG?

Save Answer

Q1.2 (b)

1 Point
Select all and only the examples below that are a terminal for this CFG?

Q2 CFG derivations

3 Points
Consider the CFG defined as ($\{A, B\},\{0,1\}, R, A$) with rules $A \rightarrow 0 A 0|0 A 1| 1 A 0|1 A 1| 1$.

Q2.1 (a)

1 Point
Select all and only the examples below that might appear in the start of a derivation of this grammar as a one step application of a production rule.

$$
\square A \Longrightarrow A
$$

$$
A \Longrightarrow 0
$$

$$
A \Longrightarrow 0 A 0
$$

```
A\Longrightarrow 0A1
```


Q2. 2 (b)

2 Points
Select all and only the examples below that are in the language generated by this context free grammar.

111

10101

```
Save Answer
```


Q3 Feedback

0 Points
Any feedback about today's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here

```
Save Answer
```


Week 5 Wednesday Review Quiz

STUDENT NAME
Search students by name or email...

Q1 Closure for CFL

2 Points

Q1.1 Union

1 Point
To prove that the set of all context-free languages is closed under the union operation ... (select all and only the correct ways to finish this sentence)
we define a general procedure which takes two context-free grammars and produces a new grammar that generates the union of the languages of the input CFGs.
we define a general procedure which takes two PDA and produces a new PDA that recognizes the union of the languages of the input PDAs.

```
Save Answer
```


Q1.2 Kleene star
 1 Point

True or false: The following construction can be used to prove that the class of context-free languages is closed under Kleene star.

Consider a CFG (V, Σ, R, S) and suppose $S_{\text {new }} \notin V$, then we define a new grammar as $\left(V \cup\left\{S_{\text {new }}\right\}, \Sigma, R \cup\left\{S_{\text {new }} \rightarrow\right.\right.$ $\left.\left.\varepsilon, S_{\text {new }} \rightarrow S_{\text {new }} S\right\}, S_{\text {new }}\right)$. We can prove that this new grammar generates the Kleene star of the language of the given CFG.

O True
O False

Q2 CFL and non-context-free languages 3 Points

The alphabet for this problem is $\Sigma=\{a, b, c\}$.

Q2.1 (a)

1 Point
True / False: Every context-free language over Σ is nonregular.
O True
O False

Save Answer

Q2.2 (b)

1 Point
True / False: There is a context-free language over Σ which has the string $a b b a$ as an element.

O True
O False

Q2.3 (c)
1 Point
True / False: There is a non-context-free language over Σ which has the string $a b b a$ as an element.

O True
O False

Q3 Feedback

0 Points
Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here

Save Answer

Week 5 Friday Review Quiz

STUDENT NAME

Search students by name or email...

Q1 TM state diagram

1 Point

Which strings over $\{0\}$ are accepted by the Turing machine with the state diagram below? (Select all that apply)
0000000_00 (where the _ denotes a blank symbol)

Empty set

Q2 TM state diagram and formal definition 4 Points

Consider the TM with the following state diagram.

$0 ;$, , R

We will consider the formal definition of this TM $(Q, \Sigma, \Gamma, \delta, q 0, q a c c e p t, q r e j e c t)$

Q2.1 (a)
1 Point
What is Σ ?

O $\{0\}$
○ $\{0, \square\}$
$\bigcirc\{0, \square, L, R\}$

What is Γ ?
O $\{0\}$
○ $\{0, \square\}$
○ $\{0, \square, L, R\}$

Q2. 2 (b)

1 Point
What is $q 0$?
O q_acc
O q_rej
O None of the above

Q2.3 (c)

1 Point
What is $\delta\left(\left(q_{a c c}, 0\right)\right)$?
○ 0; \square, L
$\bigcirc\left(q_{a c c}, \square, L\right)$
$\bigcirc\left\{\left(q_{a c c}, \square, L\right)\right\}$

Q2.4 (d)
1 Point
What is the language recognized by this TM?
O Ø
$O\{\varepsilon\}$
O $\{0\}$
O $\{0\}^{*}$
O $\{0, \square\}^{*}$

Q3 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Enter your answer here

Save Answer

